
ISSN: 2348 - 2117

International Journal of Engineering Technology and Computer Research (IJETCR)
Available Online at www.ijetcr.org

Volume 5; Issue 4; July-August: 2017; Page No. 18-25
Journal Approved by UGC

Corresponding author: P.Naresh 18

Multiple Support for Large Sequence Databases

P.Naresh1, N.Madhu Bahavani2, E.Mounika Reddy3
1Assistant Professor in Department of CSE .Sri indu College of Engineering& Technology

2PG Scholar in Department of CSE .Sri indu College of Engineering& Technology
3PG Scholar in Department of CSE .Sri indu College of Engineering& Technology

Received 10 June 2017; Accepted 06 July. 2017

Abstract
Sequential pattern mining is an important model in data mining. Its mining algorithms discover all item sets in the
data that satisfy the user-specified minimum support (minsup) and minimum confidence (mincon) constraints.
Minsup controls the minimum number of data cases that a rule must cover. Mincon controls the analytical
strength of the rule. Since only one minsup is used for the whole database, the model completely assumes that
all items in the data are of the same nature and have similar frequencies in the data. In many applications, some
data items appear frequently in the data, while others rarely appeared. If minsup is set too high, those rules that
involve rare data items will not be found. To find rules that involve both frequent and rare items, minsup has to
be set very low. This may affect combinational explosion because those frequent items will be associated with
one another in all possible ways. This problem is called the rare item problem. This paper proposes to solve this
problem. The technique allows the user to specify multiple minimum supports(MMS) to reflect the natures of
the items and their mixed frequencies in the database. In data mining, different rules may need to satisfy
different minimum supports depending on what items are in the database. Experiment results show that the
technique is very effective.

Introduction
Sequential pattern mining are an important one of
regularities that exist in databases. Since it was first
introduced in agarwal [2], the problem of sequential
mining has received a great deal of attention. The
model application is market basket analysis [2]. It
assumes how the items purchased by customers are
associated. An example of an association rule is as
follows,
Cheese-> beer [sup = 20%, conf = 80%]
This rule says that 20% of customers buy cheese
and beer together, and those who buy cheese also
buy beer 80% of the time. The basic model of
association rules as follows:
Let I = {i1, i2, …, im} be a set of data items. Let T be
a set of transactions , where each transaction t is a
set of items such that t  I. An association
mining rule is an implication of the form, X->Y,
where X  I, Y  I, and X  Y =  .
 The rule X-> Y holds in the transaction set T with
confidence c if c% of transactions in T that support X
also support Y. The rule has to support s in T if s% of
the transactions in T contains X U Y.
Given a set of transactions T (database), the problem
of mining sequential mining rules is to discover all

association rules that have support and confidence
more than the user-specified minimum support
(called minsup) and minimum confidence (called
mincon).
An association mining algorithm works in two steps:
1. Generate all large itemsets that satisfy minsup.
2. Generate all association rules that satisfy
mincon using the large itemsets.
An itemsets is simply a set of items. A large itemset is
an itemset that has transaction support above minsup.
Association rule mining has been studied
extensively in the past [e.g., 2, 3,4, 5, 11, 14, 10, 12,
1]. This model used in all these studies, has always
been the same, i.e., finding all the rules that satisfy
user specified minimum support and minimum
confidence thresholds.
The main key element in that makes association rule
mining practical is the minsup. It is used to prune the
search space and to limit the number of data rules
generated. However, using only a single minsup
absolutely assumes that all items in the data are of the
same character and/or have same frequencies in the
database. This is regularly not the case in real-life
applications. In many applications, some items
appeard very frequently in the data, while others

http://www.ijetcr.org/

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 19

rarely appeard. If the frequencies of data items vary a
great deal, we will encounter two problems:
1. If the minsup is set too high, we will not find
a l l those rules that involve infrequent items or rare
items in the data mining.
2. In order to find rules that involve both frequent
and rare items, we have to set minsup very low.
However, this may cause a problem, producing too
many rules, because those frequent items will be
associated with one another in all possible ways.
Example 1: In transactional database, in order to find
rules involving those infrequently purchased items
such as cooking pan and food processor (they
generate more profits per item), we need to set the
minsup to very low (say,
0.6%). We may find the following useful rule:
food Processor -> cooking Pan [sup = 0.6%, conf =
60%] However, this low minsup may also cause the
following meaningless rules to be found:
bread, cheese, milk -> beer [sup = 0.6%, conf =
60%] Knowing that 0.6% of the customers buy
the 4 items together is worthless because all these
items are frequently purchased in a supermarket. For
this rule to be useful, the support needs to much
higher.
This confusion is called the rare item problem [9].
When confront with this problem in applications,
researchers either split this data into a few blocks
according to the frequencies of the data items and
then mine association rules with a different minsup
[6], or group a number of related rare items
together into an abstract item so that this abstract
item is more frequent [5, 6]. The first approach is not
satisfied because that rules involve items across
different blocks are difficult to find. Similarly, the
second approach is unable to find data rules involving
individual rare items in data mining and the more
frequent items. Clearly, both approaches are
“approximate” [6].

In this paper argues that using a single minimum
support (minsup) for the whole database is inadequate
because it cannot confine the inherent natures and/or
regularity differences of the data items in the
database. By the natures of the items we mean that
some items, by nature, appeared more frequently
than others. For example, in a supermarket,
people buy cooking pan and food processor much less
frequently than they buy milk and bread. In factl,
those durable and costly goods are bought less
frequently, but each of them produces more profits.
In this paper, we extend the existing association rule
model to allow the user to specify multiple minimum
supports (MMS) to reflect different natures and
frequencies of data items. Exclusively, the user can

specify a different minimum item support (MIS) for
each item. Thus, those different rules may need to
satisfy different minimum supports depending on
whats data items are in the rules. This new technique
enables us to achieve our aim of producing rare item
rules without causing frequent data items to generate
too many meaningless rules. An efficient algorithm
for mining association rules in the model is also
presented. Proposed results on both synthetic data and
real time data show that the proposed technique is
very effective.

2. The Proposed Model

In our proposed model, the definition of association
rule mining is remains the same. The definition of
common minimum support is changed.
In the proposed model, the minimum support of a data
rule is expressed in terms of minimum item supports
(MIS) of the data items that appear in the rules. That
is, each item in the database can have a minimum
item support (MIS) specified by the user. By
providing different MIS values for different data
items, the user effectively expresses different support
requirements for different rules.
Let MIS(I) denotes the MIS value of item(I). The
minimum support of a rule R is the lowest MIS value
of among the items in the rule. That is, a rule R, a1,
a2, …, ak
ak+1, …, ar where aj
I, satisfy its minimum support if the rule actual
support in the data is greater than or equal to: min
(MIS(a1), MIS(a2), …, MIS(ar)).
Minimum item supports thus enable us to achieve
the goal of
having higher minimum supports for rules that only
involve frequent items, and having low minimum
supports for rules that involve less frequent items.
Example 2: Consider the following items in a
database,shoes, clothes, Bread.
The user-specified MIS values are as follows:
MIS(shoes) = 0.1% MIS(bread) = 2% MIS(clothes)
= 0.3%
The following rule doesn’t satisfy its minimum
support:
Clothes-> bread [sup = 0.15%, conf = 80%]
because min(MIS(bread), MIS(clothes)) = 0.3%. The
following rule satisfies its minimum support:
clothes -> shoes [sup = 0.15%, conf = 80%]
because min(MIS(clothes), MIS(shoes)) = 0.1%.
While a single minsup is insufficient for
applications, we also realize that there are
deficiencies with mincon of the existing model.
However, it is not the focus of this paper. See [7] for

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 20

k

details. we only present the algorithm for mining large
data itemsets with multiple minimum item supports

3. Mining Large Data Itemsets with Multiple
MISs

3.1 Downward closure property

As mentioned, existing algorithms for sequential
pattern mining rules typically consists of two steps:
(1) finding all large data itemsets; and (2) generating
association rules using the large itemsets.
Almost all research in sequential mining algorithms
focused on the first step since it is
computationally more expensive. Also, the second
step does not lend itself as well to smart algorithms as
confidence does not have closure property. Support,
on the other hand, is downward closed. If a set of
items satisfies the minsup, then all its subsets also
satisfy the minsup. Downward closure property
holds the key to pruning in all existing mining
algorithms.
Most of efficient algorithms for finding large data
itemsets are based on level-wise search [3]. Let I-
itemset denote an itemset with I items. At level 1, all
large 1-itemsets are generated. At level 2, all large 2-
itemsets are generated and so on. If an itemset is
not large at level I-1, it is removed as any addition of
items to the set cannot be large (downward closure
property). All the potentially large data itemsets at
level are generated from large itemsets at level I-1.
However, in the proposed model, if we use an existing
algorithm to find all large data itemsets, the
downward closure property no longer holds.
Example 3: Consider four items 1, 2, 3 and 4 in a
database. Their minimum item supports are:
MIS(1) = 15% MIS(2) = 20% MIS(3) = 5%
MIS(4) = 6%
If we find that itemset {1, 2} has 9% of support at
level 2, then it does not satisfy either MIS(1) or
MIS(2). Using an existing algorithm, this itemset is
removed since it is not large. Then, the potentially
large data itemsets {1, 2, 3} and {1, 2, 4} will not be
generated for level 3. Obviously, itemsets {1, 2, 3}
and {1, 2, 4} may be large because MIS(3) is only
5% and MIS(4) is 6%. It is thus wrong to discard {1,
2}. But if we don’t discard {1, 2}, the downward
closure property is lost.
Below, we propose an algorithm to generate large
data itemsets that satisfy the sorted closure property
(see Section 3.3), which solves the problem. The main
idea is to sort the items according to their MIS values
in ascending order to avoid the problem.
3.2 The algorithm
The proposed algorithm generalizes the Apriori
algorithm for finding large data itemsets given in [3].

We call the new algorithm, MSapriori. When there is
only one MIS value (for all data items), it reduces to
the Apriori algorithm.
Like previous algorithm Apriori, our algorithm is also
based on level-wise search. It generates all large data
itemsets by making number of passes over the
transaction database. In the first pass, it counts the
supports of individual items and determines whether
they are large or small. In each subsequent pass, it
starts with the kernel set of itemsets found to be large
in the previous pass. It uses this kernel set to
generate new possibly large data itemsets, called
candidate data itemsets. The actual supports for these
candidate data itemsets are computed during the
pass over the data. At the end of the pass, it
determines which of the candidate data itemsets are
actually large.
A key operation in the proposed algorithm is the
sorting of the items in I in ascending order of their
MIS values. This ordering is used in all the
subsequent operations in the algorithm. The items in
each itemset also follow this order. For example, in
Example 3 of the four items 1, 2, 3 and 4, and their
given MIS values, this items are sorted as follows: 3,
4, 1, 2. This ordering helps to solve the problem
identified in Section 3.1.
Example 5: Let us continue with Example 4. We
obtain,
Let L,
denote the set of large k-itemsets. Each itemset c is
of
the following form, <c[1], c[2], …, c[k]>, which
consists of items, c[1], c[2], …, c[k], where
MIS(c[1]) MIS(c[2]) … MIS(c[k]). The
proposed algorithm is given below:
Algorithm MSapriori
1 S = sort(I, MS); /* according to MIS(i)’s
stored in MS */
2 F = init-pass(M,D); /* make the first pass over
D */
3 L1 = {<f> | fF, f.count MIS(f)};
4 for (k = 2; Lk-1; k++) do
5 if k = 2 then C2 = level2-candidate-gen(F)
6 else Ck = candidate-gen(Lk-1)
7 end
8 for each transaction tD do
9 Ct = subset(Ck, t);
10 for each candidate cCt do c.count++;
11 end
12 Lk = {cCk | c.count MIS(c[1])}
13 end
14 Answer = Uk Lk;

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 21

First line performs the sorting on I according to their
MIS values of each item (stored in MS). Second line
makes the first pass over the data using the function
init-pass, which takes two parameters, the database D
and the sorted items S to produce the seeds for
generating the set of candidate large data itemsets of
length 2, i.e., C2. init-pass has two steps:
1. It makes a pass over the data to record the
original support count of each item in S.
2. Then it follows the sorted order to find the first
item i in S that meets MIS(i). i is inserted into F. For
each subsequent item j in S after i, if j.count
MIS(i) then j is also inserted into F (j.count means
the count of j).
Note that for simplicity, we use the terms support and
count interchangeably (actually, support = count/|T|,
where |T| is the size of the database T).
Example 4: Let us follow Example 3 and the given
MIS values of the four items. Assume our
transactional database has 100 transactions (not
limited to the 4 items). After making one pass over the
data, we obtain the following support counts: 3.count
= 6, 4.count =3, 1.count = 9 and 2.count = 25. Then,
(sorted order) F = {3, 1, 2}, and L1 = {<3>, <2>}
Item 4 is not in F because 4.count < MIS(3) (= 5%),
and <1> is
not in L1 because 1.count < MIS(1) (=15%).
Large 1-itemsets (L1) are obtained from F (line
three). It is easy way to show that all large 1-itemsets
are in L1.
For each subsequent pass, say pass k, the algorithm
performs 3 operations.First, the large itemsets in
Lk-1 found in the (k-1)th pass are used to generate
the candidate itemsets Ck using the condidate-gen
function (line 6). It then scans the data and updates
various support counts of the candidates in Ck (line
8-11). After that,those new large data itemsets are
identified to form Lk (line 12).
However, there is a special case, i.e., when k = 2 (line
5), for which the candidate itemsets generation
function is different. Both candidate generation
functions level2-candidate-gen and candidate-gen are
described below.
3.3 Candidate generation
level2-candidate-gen takes as parameter F, and returns
a superset of the set of all large 2-itemsets. The
algorithm is as follows:
1 for each item f in F in the same order do
2 if f.count  MIS(f) then
3 for each item h in F that is after f do
4 if h.count MIS(f) then
5 insert <f, h> into C2
C2 = {<3, 1>, <3, 2>}

<1, 2> is not a candidate 2-itemset because the
support count of
item 1 is only 9%, which is less than MIS(1) (=
15%). Hence, <1, 2> cannot be large.
Note that we must use F rather than L1 because
L1 does not contain those data items that may satisfy
the MIS of an earlier items but not the MIS of itself
(see the difference between F and L1 in Example 4).
Using F, the problem discussed in Section 3.1 is
solved for C2.
Correctness of level2-candidate-gen: See [7].
Let us now present the candidate-gen function. It
performs a same task as Apriori-gen in Apriori
algorithm [3]. candidate-gen takes as parameter Lk-1
(k > 2) the set of all large (k-1)-itemsets, and returns
a superset of the set of all large k-itemsets. It has 2
steps, the join and the prune step. The join step is the
same as that in the apriori-gen function. The prune
step is, however, different. The join step is given
below. It joins Lk-1 with Lk-1:
insert into Ck
select m.item1,m.item2,…, m.itemk-1, n.itemk-1
from Lk-1 m,Lk–1 n
where m.item1 = n.item1, …,m.itemk-2 = n.itemk-2,
m.itemk-1< n.itemk-1
Basically, it joins any 2 itemsets in Lk-1 whose first k-
2 items are the same, but last items are different.

After the join step, there may still be candidate
data itemsets in Ck that are impossible to be large.
The prune step removes these itemsets. This step is
given below:
1 for each itemset cCk do
2 for each (k-1)-subset s of c do
3 if (c[1]s) or (MIS(c[2]) = MIS(c[1]))
then
4 if (sLk-1) then delete c from Ck;

It checks each itemset c in Ck (line 1) to see
whether it can be deleted by finding its (k-1)-subsets
in Lk-1. For each (k-1)-subset s in c, if s is not in Lk-
1, c can be deleted. However, there is an exception,
which is when s does not include c[1] (there is only
one such s). This means that the first item of c, which
has the lowest MIS value, is not in s. Then, even if s is
not in Lk-1, we cannot delete c because we cannot be
sure that s does not satisfy MIS(c[1]), although we
know that it does not satisfy MIS(c[2]), unless
MIS(c[2]) = MIS(c[1]) (line 3).
Example 6: Let L3 be {<1, 2, 3>, <1, 2, 5>, <1, 3,
4>, <1, 3, 5>,
<1, 4, 5>, <1, 4, 6>, <2, 3, 5>}. Items in each itemset
are in the
sorted order. After the join step, C4 is

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 22

a=
6

{<1, 2, 3, 5>, <1, 3, 4, 5>, <1, 4, 5, 6>}
The prune step deletes the itemset <1, 4, 5, 6>
because the itemset <1, 5, 6> is not in L3. We are
then left with C4 = {<1, 2,
3, 5>, <1, 3, 4, 5>}. <1, 3, 4, 5> is not deleted
although <3, 4,
5> is not in L3 because the minimum support for
<3, 4, 5> is MIS(3), which may be higher than
MIS(1). Although <3, 4, 5> does not satisfy MIS(3),
we cannot be sure that it does not satisfy MIS(1)
either. However, if we know MIS(3) = MIS(1), then
<1, 3, 4, 5> can also be deleted.
Correctness of candidate-gen: See [7].
The problem discussed in Section 3.1 is solved for Ck
(k > 2) because due to the sorting we do not need to
extend a large (k-1)- itemset with any item that has a
lower MIS value, but only an item with a higher (or
equal) MIS value. Such itemsets are said to have
satisfied the sorted closure property.
3.4 Subset function
The subset function checks to see which itemsets
in Ck are in transaction t. Itemsets in Ck are stored
in a tree similar to that in [3]. Each tree node
contains an item (except the root). By depth- first
traversing of the tree against t, we can find if an
itemset is in t. At each node, we check whether the
item in the node is in t. If experiment. Again the
three thick lines give the number of candidate
itemsets using the existing approach of a single
minsup at 0.1%, 0.2% and 0.3% respectively
reached, we know that the itemset represented by the
path is in t.
This method for finding Ct is different from that in
[3]. The method in [3] uses each item in t to traverse
the tree. In our extended model, this, however,
requires the items in each transaction t to be sorted
according to their MIS values in ascending order in
order to achieve the sorted closure property.

resides on hard disk. Most databases for association
rule mining are very large. (This is, however, an
alternative implementation).
4. Evaluation
The section evaluates the extended model. We
show that the model allows us to find rules with very
low supports (involving rare items) yet without
generating a huge number of meaningless rules with
frequent items.
4.1 Experiments with synthetic data
The synthetic test data is generated with the data
generator in [3], which is widely used for
evaluating association rule mining algorithms.
For our experiments, we need a method to
assign MIS values to items in the data set. We use

the actual frequencies (or the supports) of the
items in the data as the basis for MIS assignments.
Specifically, we use the following formulas:
MIS(i) M(i) M(i) LS LS Otherwise
M(i) f(i)
f(i) is the actual frequency (or the support expressed
in percentage of the data set size) of item i in the
data. LS is the user-specified lowest minimum item
support allowed. (0
1) is a parameter that controls how the MIS
values for items
should be related to their frequencies. Thus, to set
MIS values for items we use two parameters, and
LS. If = 0, we have only one minimum support,
LS, which is the same as the traditional association
rule mining. If = 1 and f(i) LS, f(i) is the MIS
value for i.
Example 7: Consider three items, 1, 2 and 3 in
a data set, where f(1) = 1%, f(2) = 3% and f(3) =
10%. If we use LS =
2% and = 0.3, then MIS(1) = 2%, MIS(2) =
2% and
MIS(3) = 3%.
For our experiments, we generated a number of
data sets to test our model. Here, we use the results
from one data set to illustrate. The others are
similar and thus omitted. This data set is
generated with 1000 items, and 10 items per
transaction on average [3]. The number of
transaction is 100,000. The standard deviation of
the item frequencies of the data set is
2) 1.14% (the mean is 1.17%, expressed in
percentage of the total data set size). This shows
that the frequencies of the items do not vary a
great deal. (The synthetic data generator is designed
for generating data used by mining algorithms with
only one minsup.) For our experiment, we use
three very low LS values, 0.1%, 0.2%, and 0.3%.
Figure 1 shows the number of large itemsets
found. The three thick lines give the numbers of
large itemsets found using the existing approach
of a single minsup at 0.1%, 0.2% and 0.3%
respectively. To show how affects the number of
large itemsets found by our method, we let = 1/
and vary from 1 to 20. Figure 2 gives the
corresponding numbers of candidate itemsets in
the experiment. Again the three thick lines give
the number of candidate itemsets using the existing
approach of a single minsup at 0.1%, 0.2% and
0.3% respectively

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 23

a=
6

Fig.1: Number of large itemsets found

Fig.2: Number of candidate itemsets

We see from Figure 1 that the number of large
itemsets is significantly reduced by our method when
is not too large. When becomes larger, the
number of large itemsets found by our method gets
closer to that found by the single minsup method. The
reason is because when larger more becomes and
more items’ MIS values reach LS. From our
experiences, the user is usually satisfied with the
large itemsets found at = 4. At = 4 and LS =
0.2%, for example, the number of large itemsets
found by our method is less than 61% of that found by
the single minsup method. From Figure 2, we see that
the corresponding numbers of candidate itemsets are
also much less. The execution times are roughly the
same (hence are not shown here) because database
scan dominates the computation in this experiment.
Below, we will see that for our real-life data set, the
reductions in both the number of large itemsets found
and the number of candidate itemsets used are much
more remarkable because the item frequencies in our
real-life data set vary a great deal. The execution
times also drop drastically because the data set is

small and the computation time is dominated by the
itemsets generation.

4.2 Application to real-life data

We tested the algorithm using a number of real-life
data sets. Here, we only use one application data
set. The results with the others are similar Due to
confidentiality agreement, we are unable to provide
the details of the application. Here, we only give the
characteristics of the data. The data set has 55 items
and 700 transactions. Each transaction has 14-16
items. Some items can appear in 500 transactions,
while some may only appear in 30 transactions. The
standard deviation of item frequencies in the data is
25.4% (the mean is 24.3%).

For this application, the user sets LS = 1%. The results
are shown in Figure 3, which include both the
numbers of candidate itemsets and large itemsets
found. The two thick lines show the number of
candidate itemsets and the number of large itemsets
found respectively by the single minsup (= 1%)
method. Our new method reduces the numbers
dramatically. For this application, the user is happy
with the large itemsets found at = 4. The number
of large itemsets found by our method at = 4 is
only
8.5% of that found by the existing single minsup
method. The drop in the number of candidate itemsets
is even more drastic.

Fig.3: Numbers of candidate itemsets and large

itemsets.

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 24

a=
17

a=
18

a=
19

Fig.4: Comparison of execution times in percentage

Figure 4 shows the execution time comparison in
percentage. The execution time used by the single
minsup method is set to
100%. We can see that the proposed method also
reduces the execution time significantly (since this
data set is small, the itemsets generation dominates the
whole computation).
Note that for applications, the user can also assign
MIS values manually rather than using the formulas in
Section 4.1.

5. Related Work

Association rule mining has been studied extensively
in the past [e.g., 2, 3, 5, 11, 4, 14, 10, 12, 1].
However, the model used in all these works is the
same, i.e., with only one user-specified minimum
support threshold [2].
Multiple-level association rule mining in [5] can use
different minimum supports at different levels of
hierarchy. However, at the same level it uses only
one minsup. For example, we have the taxonomy:
milk and cheese are Dairy_product; and pork and beef
are Meat. At the level of Dairy_product and Meat,
association rules can have one minsup, and at the level
of milk, cheese, pork and beef, there can be a
different minsup. This model is essentially the
same as the original model in [2] because each
level has its own association rules involving items
of that level. Our proposed model is more flexible
as we can assign a MIS value for each item. [13]
presents a generalized multiple-level association rule
mining technique, where an association rule can
involve items at any level of the hierarchy. However,
the model still uses only one minsup.
It is easy to see that our algorithm
MSapriori is a generalization of the Apriori
algorithm [3] for single minsup mining. That is,
when all MIS values are the same as LS, it

reduces to the Apriori algorithm. A key idea of our
algorithm MSapriori is the sorting of items in I
according to their MIS use level-wise search, each
step of our algorithm is different from that of
algorithm Apriori, from initialization, candidate
itemsets generation to pruning of candidate itemsets
This paper argues that a single minsup is insufficient
for association rule mining since it cannot reflect
the natures and frequency differences of the items
in the database. In real-life applications, such
differences can be very large. It is neither satisfactory
to set the minsup too high, nor is it satisfactory to set
it too low. This paper proposes a more flexible
and powerful model. It allows the user to specify
multiple minimum item supports. This model enables
us to found rare item rules yet without producing a
huge number of meaningless rules with frequent
items. The effectiveness of the new model is shown
experimentally and practically

References

1. Aggarwal, C., and Yu, P. "Online generation of
association rules." ICDE-98, 1998, pp. 402-411.

2. Agrawal, R., Imielinski, T., Swami, A. “Mining
association rules between sets of items in large
databases.” SIGMOD-1993, 1993, pp. 207-216.

3. Agrawal, R. and Srikant, R. “Fast algorithms
for mining association rules.” VLDB-94, 1994.

4. Brin, S. Motwani, R. Ullman, J. and Tsur, S.
“Dynamic Itemset counting and implication
rules for market basket data.” SIGMOD-97,
1997, pp. 255-264.

5. Han, J. and Fu, Y. “Discovery of multiple-level
association rules from large databases.” VLDB-95.

6. Lee, W., Stolfo, S. J., and Mok, K. W. “Mining
audit data to build intrusion detection models.”
KDD-98.

7. Liu, B., Hsu, W. and Ma, Y. Mining association
rules with multiple minimum supports. SoC
technical report, 1999.

8. Liu, B., Hsu, W. and Ma, Y. "Pruning and
Summarizing the Discovered Associations" KDD-
99, 1999.

9. Mannila, H. "Database methods for data
mining.” KDD-98 tutorial, 1998.

10. Ng. R. T. Lakshmanan, L. Han, J. “Exploratory
mining and pruning optimizations of
constrained association rules.” SIGMOD-98,
1998.

11. Park, J. S. Chen, M. S. and Yu, P. S. “An
effective hash based algorithm for mining
association rules.” SIGMOD-95, 1995, pp. 175-
186.

 P.Naresh, et. al, International Journal of Engineering Technology and Computer Research (IJETCR)

© 2017 IJETCR. All Rights Reserved. 25

12. Rastogi, R. and Shim, K. “Mining optimized
association rules with categorical and numeric
attributes.” ICDE –98.

13. Srikant, R. and Agrawal, R. “Mining
generalized association rules.” VLDB-1995, 1995.

14. Srikant, R., Vu, Q. and Agrawal, R. “Mining
association rules with item constraints.” KDD-97,
1997, pp. 67-73.

