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Abstract 
Sequential pattern mining is an important model in data mining. Its mining algorithms discover all item sets in the 
data that satisfy the user-specified minimum support (minsup) and minimum confidence (mincon) constraints. 
Minsup controls the minimum number of data cases that a rule must cover. Mincon controls the analytical 
strength of the rule. Since only one minsup is used for the whole database, the model completely assumes that 
all items in the data are of the same nature and have similar frequencies in the data.  In many applications, some 
data items appear frequently in the data, while others rarely appeared. If minsup is set too high, those rules that 
involve rare data items will not be found. To find rules that involve both frequent and rare items, minsup has to 
be set very low. This may affect combinational explosion because those frequent items will be associated with 
one another in all possible ways. This problem is called the rare item problem. This paper proposes to solve this 
problem. The technique allows the user to specify multiple minimum supports(MMS) to reflect the natures of 
the items and their mixed frequencies in the database. In data mining, different rules may need to satisfy 
different minimum supports depending on what items are in the database. Experiment results show that the 
technique is very effective. 
 

Introduction 
Sequential pattern mining are an important one of 
regularities that exist in databases. Since it was first 
introduced in agarwal [2], the problem of sequential 
mining has received a great deal of attention. The 
model application is market basket analysis [2]. It 
assumes how the items purchased by customers are 
associated. An example of an association rule is as 
follows, 
Cheese-> beer [sup = 20%, conf = 80%] 
This  rule  says  that  20%  of  customers  buy  cheese  
and  beer together, and those who buy cheese also 
buy beer 80% of the time. The basic model of 
association rules as follows: 
Let I = {i1, i2, …, im} be a set of data items. Let T be 
a set of transactions , where each transaction t is  a  
set  of  items  such  that  t   I.  An association 
mining  rule  is  an implication of the form, X->Y, 
where X  I, Y  I, and X   Y =  . 
 The rule X-> Y holds in the transaction set T with 
confidence c if c% of transactions in T that support X 
also support Y. The rule has to support s in T if s% of 
the transactions in T contains X U Y. 
Given a set of transactions T (database), the problem 
of mining sequential mining rules is to discover all 

association rules that have support and confidence 
more than the user-specified minimum  support  
(called  minsup)  and  minimum  confidence (called 
mincon). 
An association mining algorithm works in two steps: 
1.   Generate all large itemsets that satisfy minsup. 
2.   Generate all association rules that satisfy 
mincon using the large itemsets. 
An itemsets is simply a set of items. A large itemset is 
an itemset that has transaction support above minsup. 
Association rule mining has been studied 
extensively in the past [e.g., 2, 3,4, 5, 11, 14, 10, 12, 
1]. This model used in all these studies, has always 
been the same, i.e., finding all the rules that satisfy 
user specified minimum support and minimum 
confidence thresholds. 
The main key element in that makes association rule 
mining practical is the minsup. It is used to prune the 
search space and to limit the number of data rules 
generated. However, using only a single minsup 
absolutely assumes that all items in the data are of the 
same character and/or have same frequencies in the 
database. This is regularly not the case in real-life 
applications. In many applications, some items 
appeard very frequently in the data, while others 
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rarely appeard. If the frequencies of data items vary a 
great deal, we will encounter two problems: 
1.   If the minsup is set too high, we will not find 
a l l  those rules that involve infrequent items or rare 
items in the data mining. 
2.   In order to find rules that involve both frequent 
and rare items, we have to set minsup very low. 
However, this may cause a problem, producing too 
many rules, because those frequent items will be 
associated with one another in all possible ways. 
Example 1: In transactional database, in order to find 
rules involving those infrequently purchased items 
such as cooking pan and food processor (they 
generate more profits per item), we need  to  set  the  
minsup  to  very low (say, 
0.6%). We may find the following useful rule: 
food Processor -> cooking Pan  [sup = 0.6%, conf = 
60%] However, this low minsup may also cause the 
following meaningless rules to be found: 
bread, cheese, milk -> beer  [sup = 0.6%, conf = 
60%] Knowing  that  0.6%  of  the  customers  buy  
the  4  items together is worthless because all these 
items are frequently purchased in a supermarket. For 
this rule to be useful, the support needs to much 
higher. 
This confusion is called the rare item problem [9].  
When confront with this problem in applications, 
researchers either split this data into a few blocks 
according to the frequencies of the data items  and  
then  mine  association  rules  with  a different minsup  
[6], or group  a number of related  rare items 
together into an abstract item so that this abstract 
item is more frequent [5, 6]. The first approach is not 
satisfied because that rules involve items across 
different blocks are difficult to find. Similarly, the 
second approach is unable to find data rules involving 
individual rare items in data mining and the more 
frequent items. Clearly, both approaches are 
“approximate” [6]. 

In this paper argues that using a single minimum 
support (minsup) for the whole database is inadequate 
because it cannot confine the inherent natures and/or 
regularity differences of the data items in the 
database. By the natures of the items we mean that 
some items, by nature, appeared   more   frequently   
than   others.   For   example,   in   a supermarket, 
people buy cooking pan and food processor much less 
frequently than they buy milk and bread. In factl, 
those durable and costly goods are bought less 
frequently, but each of them produces more profits.   
In this paper, we extend the existing association rule 
model to allow the user to specify multiple minimum 
supports (MMS) to reflect different natures and 
frequencies of data items. Exclusively, the user can 

specify a different minimum item support (MIS) for 
each item. Thus, those different rules may need to 
satisfy different minimum supports depending on 
whats data items are in the rules. This new technique 
enables us to achieve our aim of producing rare item 
rules without causing frequent data items to generate 
too many meaningless rules. An efficient algorithm 
for mining association rules in the model is also 
presented. Proposed results on both synthetic data and 
real time data show that the proposed technique is 
very effective. 

2.  The Proposed Model 

In our proposed model, the definition of association 
rule mining is remains the same. The definition of 
common minimum support is changed. 
In the proposed model, the minimum support of a data 
rule is expressed in terms of minimum item supports 
(MIS) of the data items that appear in the rules. That 
is, each item in the database can have a minimum 
item support (MIS) specified by the user. By 
providing different MIS values for different data 
items, the user effectively expresses different support 
requirements for different rules. 
Let MIS(I) denotes the MIS value of item(I). The 
minimum support of a rule R is the lowest MIS value 
of among the items in the rule. That is, a rule R, a1, 
a2, …, ak           
ak+1, …, ar  where aj        
I, satisfy its minimum support if the rule actual 
support in the data is greater than or equal to: min 
(MIS(a1), MIS(a2), …, MIS(ar)). 
Minimum item supports thus enable us to achieve 
the goal of 
having higher minimum supports for rules that only 
involve frequent items, and having low minimum 
supports for rules that involve less frequent items. 
Example 2: Consider the following items in a 
database,shoes, clothes, Bread. 
The user-specified MIS values are as follows: 
MIS(shoes) = 0.1%  MIS(bread) = 2%  MIS(clothes) 
= 0.3% 
The following rule doesn’t satisfy its minimum 
support: 
Clothes-> bread [sup = 0.15%, conf = 80%] 
because min(MIS(bread), MIS(clothes)) = 0.3%. The 
following rule satisfies its minimum support: 
clothes -> shoes [sup = 0.15%, conf = 80%] 
because min(MIS(clothes), MIS(shoes)) = 0.1%. 
While a single minsup  is insufficient for 
applications, we also realize that there are 
deficiencies with mincon of the existing model. 
However, it is not the focus of this paper. See [7] for 
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details. we only present the algorithm for mining large 
data itemsets with multiple minimum item supports  

3.   Mining Large Data Itemsets with Multiple 
MISs 

3.1 Downward closure property 

As mentioned, existing algorithms for sequential 
pattern mining rules typically consists of two steps: 
(1) finding all large data itemsets; and (2) generating 
association rules using the large itemsets. 
Almost all research in sequential mining algorithms 
focused  on  the  first  step  since  it  is  
computationally  more expensive. Also, the second 
step does not lend itself as well to smart algorithms as 
confidence does not have closure property. Support, 
on the other hand, is downward closed. If a set of 
items satisfies the minsup, then all its subsets also 
satisfy the minsup. Downward  closure  property  
holds  the  key  to  pruning  in  all existing mining 
algorithms. 
Most of efficient algorithms for finding large data 
itemsets are based on level-wise search [3]. Let I-
itemset denote an itemset with I items. At level 1, all 
large 1-itemsets are generated. At level 2, all large 2-
itemsets are generated and so on. If an itemset is 
not large at level I-1, it is removed as any addition of 
items to the set cannot be large (downward closure 
property). All the potentially large data itemsets at 
level  are generated from large itemsets at level I-1. 
However, in the proposed model, if we use an existing 
algorithm  to  find  all  large data itemsets,  the  
downward  closure property no longer holds. 
Example 3: Consider four items 1, 2, 3 and 4 in a 
database. Their minimum item supports are: 
MIS(1) = 15%        MIS(2) = 20% MIS(3) = 5%          
MIS(4) = 6% 
If we find that itemset {1, 2} has 9% of support at 
level 2, then it does not satisfy either MIS(1) or 
MIS(2). Using an existing algorithm, this itemset is 
removed since it is not large. Then, the potentially 
large data itemsets {1, 2, 3} and {1, 2, 4} will not be 
generated for level 3. Obviously, itemsets {1, 2, 3} 
and {1, 2, 4} may be large because MIS(3) is only 
5% and MIS(4) is 6%. It is thus wrong to discard {1, 
2}. But if we don’t discard {1, 2}, the downward 
closure property is lost. 
Below, we propose an algorithm to generate large 
data itemsets that satisfy the sorted closure property 
(see Section 3.3), which solves the problem. The main 
idea is to sort the items according to their MIS values 
in ascending order to avoid the problem. 
3.2 The algorithm 
The proposed algorithm generalizes the Apriori 
algorithm for finding large data itemsets given in [3]. 

We call the new algorithm, MSapriori. When there is 
only one MIS value (for all data items), it reduces to 
the Apriori algorithm. 
Like previous algorithm Apriori, our algorithm is also 
based on level-wise search. It generates all large data 
itemsets by making number of passes over the 
transaction database. In the first pass, it counts the 
supports of individual items and determines whether 
they are large or small. In each subsequent pass, it 
starts with the kernel set of itemsets found to be large 
in the previous pass. It uses this kernel set to 
generate new possibly large data itemsets, called 
candidate data itemsets. The actual supports for these 
candidate data itemsets are computed during  the 
pass over the data. At the end of the pass, it 
determines which of the candidate data itemsets are 
actually large. 
A key operation in the proposed algorithm is the 
sorting of the items in I in ascending order of their 
MIS values. This ordering is used in all the 
subsequent operations in the algorithm. The items in 
each itemset also follow this order. For example, in 
Example 3 of the four items 1, 2, 3 and 4, and their 
given MIS values, this items are sorted as follows: 3, 
4, 1, 2. This ordering helps to solve the problem 
identified in Section 3.1. 
Example 5: Let us continue with Example 4. We 
obtain, 
Let L, 
denote the set of large k-itemsets. Each itemset c is 
of 
the  following  form,  <c[1],  c[2],  …,   c[k]>,  which  
consists  of items, c[1], c[2], …,  c[k], where 
MIS(c[1])     MIS(c[2])     … MIS(c[k]). The 
proposed algorithm is given below: 
Algorithm MSapriori 
1       S = sort(I, MS);     /* according to MIS(i)’s 
stored in MS */ 
2      F = init-pass(M,D);      /* make the first pass over 
D */ 
3      L1 = {<f> | fF, f.count MIS(f)}; 
4      for (k = 2; Lk-1; k++) do 
5            if k = 2 then  C2 = level2-candidate-gen(F) 
6            else  Ck = candidate-gen(Lk-1) 
7            end 
8            for each transaction tD do 
9                  Ct = subset(Ck, t); 
10               for each candidate cCt do  c.count++; 
11          end 
12          Lk = {cCk | c.count MIS(c[1])} 
13   end 
14   Answer = Uk Lk; 
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First line performs the sorting on I according to their 
MIS values of each item (stored in MS). Second line 
makes the first pass over the data using the function 
init-pass, which takes two parameters, the database D 
and the sorted items S to produce the seeds for 
generating the set of candidate large data itemsets of 
length 2, i.e., C2. init-pass has two steps: 
1.  It makes a pass over the data to record the 
original support count of each item in S. 
2. Then it follows the sorted order to find the first 
item i in S that meets MIS(i). i is inserted into F. For 
each subsequent item j in S after i, if j.count 
MIS(i) then j is also inserted into F (j.count means 
the count of j). 
Note that for simplicity, we use the terms support and 
count interchangeably (actually, support = count/|T|, 
where |T| is the size of the database T). 
Example 4: Let us follow Example 3 and the given 
MIS values of the four items. Assume our 
transactional database has 100 transactions (not 
limited to the 4 items). After making one pass over the 
data, we obtain the following support counts: 3.count 
= 6, 4.count =3, 1.count = 9 and 2.count = 25. Then, 
(sorted order) F = {3, 1, 2}, and L1 = {<3>, <2>} 
Item 4 is not in F because 4.count < MIS(3) (= 5%), 
and <1> is 
not in L1 because 1.count < MIS(1) (=15%). 
Large 1-itemsets (L1) are obtained from F (line 
three). It is easy way to show that all large 1-itemsets 
are in L1. 
For each subsequent pass, say pass k, the algorithm 
performs  3 operations.First, the large itemsets in 
Lk-1  found in the (k-1)th pass are used to generate 
the candidate itemsets Ck using the condidate-gen 
function (line 6). It then scans the data and updates 
various support counts of the candidates in Ck  (line 
8-11). After that,those new large data itemsets are 
identified to form Lk (line 12). 
However, there is a special case, i.e., when k = 2 (line 
5), for which the candidate itemsets generation 
function is different. Both candidate generation 
functions level2-candidate-gen and candidate-gen are 
described below. 
3.3  Candidate generation 
level2-candidate-gen takes as parameter F, and returns 
a superset of the set of all large 2-itemsets. The 
algorithm is as follows: 
1    for each item f in F in the same order do 
2          if f.count  MIS(f) then 
3                for each item h in F that is after f do 
4                      if h.count MIS(f) then 
5                          insert <f, h> into C2 
C2 = {<3, 1>, <3, 2>} 

<1, 2> is not a candidate 2-itemset because the 
support count of 
item 1 is only 9%, which is less than MIS(1) (= 
15%). Hence, <1, 2> cannot be large. 
Note  that  we  must  use  F  rather  than  L1   because  
L1  does  not contain those data items that may satisfy 
the MIS of an earlier items but not the MIS of itself 
(see the difference between F and L1 in Example 4). 
Using F, the problem discussed in Section 3.1 is 
solved for C2. 
Correctness of level2-candidate-gen: See [7]. 
Let us now present the candidate-gen function. It 
performs a same task as Apriori-gen in Apriori 
algorithm [3]. candidate-gen takes as parameter Lk-1  
(k > 2) the set of all large (k-1)-itemsets, and returns 
a superset of the set of all large k-itemsets. It has 2 
steps, the join and the prune step. The join step is the 
same as that in the apriori-gen function. The prune 
step is, however, different. The join step is given 
below. It joins Lk-1 with Lk-1: 
insert into Ck 
select m.item1,m.item2,…, m.itemk-1, n.itemk-1 
from Lk-1 m,Lk–1 n  
where m.item1 = n.item1, …,m.itemk-2 = n.itemk-2, 
m.itemk-1< n.itemk-1 
Basically, it joins any 2 itemsets in Lk-1 whose first k-
2 items are the same, but last items are different. 

After the join step, there may still be candidate 
data itemsets in Ck that are impossible to be large. 
The prune step removes these itemsets. This step is 
given below: 
1      for each itemset cCk do 
2            for each (k-1)-subset s of c do 
3                  if (c[1]s) or (MIS(c[2]) = MIS(c[1])) 
then 
4                     if (sLk-1) then  delete c from Ck; 

It checks each itemset c in Ck (line 1) to see 
whether it can be deleted by finding its (k-1)-subsets 
in Lk-1. For each (k-1)-subset s in c, if s is not in Lk-
1, c can be deleted. However, there is an exception, 
which is when s does not include c[1] (there is only 
one such s). This means that the first item of c, which 
has the lowest MIS value, is not in s. Then, even if s is 
not in Lk-1, we cannot delete c because we cannot be 
sure that s does not satisfy MIS(c[1]), although we 
know that it does not satisfy MIS(c[2]), unless 
MIS(c[2]) = MIS(c[1]) (line 3). 
Example 6: Let L3 be {<1, 2, 3>, <1, 2, 5>, <1, 3, 
4>, <1, 3, 5>, 
<1, 4, 5>, <1, 4, 6>, <2, 3, 5>}. Items in each itemset 
are in the 
sorted order. After the join step, C4 is 
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{<1, 2, 3, 5>, <1, 3, 4, 5>, <1, 4, 5, 6>} 
The prune step deletes the itemset <1, 4, 5, 6> 
because the itemset <1, 5, 6> is not in L3. We are 
then left with C4 = {<1, 2, 
3, 5>, <1, 3, 4, 5>}. <1, 3, 4, 5> is not deleted 
although <3, 4, 
5> is not in L3  because the minimum support for 
<3, 4, 5> is MIS(3), which may be higher than 
MIS(1). Although <3, 4, 5> does not satisfy MIS(3), 
we cannot be sure that it does not satisfy MIS(1) 
either. However, if we know MIS(3) = MIS(1), then 
<1, 3, 4, 5> can also be deleted. 
Correctness of candidate-gen: See [7]. 
The problem discussed in Section 3.1 is solved for Ck 
(k > 2) because due to the sorting we do not need to 
extend a large (k-1)- itemset with any item that has a 
lower MIS value, but only an item with a higher (or 
equal) MIS value. Such itemsets are said to have 
satisfied the sorted closure property. 
3.4  Subset function 
The subset function checks to see which itemsets 
in Ck  are in transaction t. Itemsets in Ck  are stored 
in a tree similar to that in [3]. Each tree node 
contains an item (except the root). By depth- first 
traversing of the tree against t, we can find if an 
itemset is in t. At each node, we check whether the 
item in the node is in t. If experiment. Again  the 
three  thick  lines  give  the  number  of candidate 
itemsets using the existing approach of a single 
minsup at 0.1%, 0.2% and 0.3% respectively 
reached, we know that the itemset represented by the 
path is in t. 
This method for finding Ct  is different from that in 
[3]. The method in [3] uses each item in t to traverse 
the tree. In our extended model, this, however, 
requires the items in each transaction t to be sorted 
according to their MIS values in ascending order in 
order to achieve the sorted closure property. 
 
resides on hard disk. Most databases for association 
rule mining are very large. (This is, however, an 
alternative implementation). 
4.  Evaluation 
The  section  evaluates  the  extended  model.  We  
show  that  the model allows us to find rules with very 
low supports (involving rare items) yet without 
generating a huge number of meaningless rules with 
frequent items. 
4.1  Experiments with synthetic data 
The synthetic test data is generated with the data 
generator in [3],  which  is  widely  used  for  
evaluating  association  rule mining algorithms. 
For  our  experiments,  we  need  a  method  to  
assign  MIS values to items in the data set. We use 

the actual frequencies (or the supports) of the 
items in the data as the basis for MIS assignments. 
Specifically, we use the following formulas: 
MIS(i)  M(i) M(i) LS   LS  Otherwise 
M(i)   f(i) 
f(i) is the actual frequency (or the support expressed 
in percentage of the data set size) of item i in the 
data. LS is the user-specified lowest minimum item 
support allowed.    (0 
1) is a parameter that controls how the MIS 
values for items 
should be related to their frequencies. Thus, to set 
MIS values for items we use two parameters,     and 
LS. If     = 0, we have only one minimum support, 
LS, which is the same as the traditional association 
rule mining. If     = 1 and f(i)    LS, f(i) is the MIS 
value for i. 
Example 7: Consider three items, 1, 2 and 3 in 
a data set, where f(1) = 1%, f(2) = 3% and f(3) = 
10%. If we use LS = 
2%  and      =  0.3,  then  MIS(1)  =  2%,  MIS(2)  =  
2%  and 
MIS(3) = 3%. 
For our experiments, we generated a number of 
data sets to test our model. Here, we use the results 
from one data set to illustrate. The others are 
similar and thus omitted. This data set is 
generated with 1000 items, and 10 items per 
transaction on  average [3]. The number  of 
transaction  is  100,000.  The standard deviation of 
the item frequencies of the data set is 
2) 1.14%  (the  mean  is  1.17%,  expressed  in  
percentage  of  the total  data  set  size).  This  shows  
that  the  frequencies  of  the items do not vary a 
great deal. (The synthetic data generator is designed 
for generating data used by mining algorithms with 
only one minsup.) For our experiment, we use 
three very low LS values, 0.1%, 0.2%, and 0.3%. 
Figure 1 shows the number of  large  itemsets  
found.  The  three  thick  lines  give  the numbers of 
large itemsets found using the existing approach 
of a single minsup at 0.1%, 0.2% and 0.3% 
respectively. To show how    affects the number of 
large itemsets found by our method, we let      = 1/    
and vary      from 1 to 20. Figure 2 gives the 
corresponding numbers of candidate itemsets in 
the experiment. Again  the three  thick  lines  give  
the  number  of candidate itemsets using the existing 
approach of a single minsup at 0.1%, 0.2% and 
0.3% respectively 
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Fig.1: Number of large itemsets found 

 
Fig.2: Number of candidate itemsets 
 

We see from Figure 1 that the number of large 
itemsets is significantly reduced by our method when      
is not too large. When     becomes larger, the 
number of large itemsets found by our method gets 
closer to that found by the single minsup method. The 
reason is because when larger more becomes and 
more items’ MIS values reach LS. From our 
experiences, the user is usually satisfied with the 
large itemsets found at     = 4. At     = 4 and LS = 
0.2%, for example, the number of large itemsets 
found by our method is less than 61% of that found by 
the single minsup method. From Figure 2, we see that 
the corresponding numbers of candidate itemsets are 
also much less. The execution times are roughly the 
same (hence are not shown here) because database 
scan dominates the computation in this experiment. 
Below, we will see that for our real-life data set, the 
reductions in both the number of large itemsets found 
and the number of candidate itemsets used are much 
more remarkable because the item frequencies  in  our  
real-life  data  set  vary  a  great  deal.  The execution 
times also drop drastically because the data set is 

small and the computation time is dominated by the 
itemsets generation. 

4.2 Application to real-life data 

We tested the algorithm using a number of real-life 
data sets. Here, we only use one application data 
set. The results with the others are similar Due to 
confidentiality agreement, we are unable to provide 
the details of the application. Here, we only give the 
characteristics of the data. The data set has 55 items 
and 700 transactions. Each transaction has 14-16 
items. Some items can appear in 500 transactions, 
while some may only appear in 30 transactions. The 
standard deviation of item frequencies in the data is 
25.4% (the mean is 24.3%). 

For this application, the user sets LS = 1%. The results 
are shown in Figure 3, which include both the 
numbers of candidate itemsets and large itemsets 
found. The two thick lines show the number of 
candidate itemsets and the number of large itemsets 
found respectively by the single minsup (= 1%) 
method. Our new method reduces the numbers 
dramatically. For this application, the user is happy 
with the large itemsets found at      = 4. The number 
of large itemsets found by our method at     = 4 is 
only 
8.5% of that found by the existing single minsup 
method. The drop in the number of candidate itemsets 
is even more drastic. 

 
Fig.3: Numbers of candidate itemsets and large 

itemsets. 
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Fig.4: Comparison of execution times in percentage 

Figure 4 shows the execution time comparison in 
percentage. The execution time used by the single 
minsup method is set to 
100%. We can see that the proposed method also 
reduces the execution time significantly (since this 
data set is small, the itemsets generation dominates the 
whole computation). 
Note that for applications, the user can also assign 
MIS values manually rather than using the formulas in 
Section 4.1. 

5.  Related Work 

Association rule mining has been studied extensively 
in the past [e.g., 2, 3, 5, 11, 4, 14, 10, 12, 1]. 
However, the model used in all these  works  is  the  
same,  i.e.,  with  only  one  user-specified minimum 
support threshold [2]. 
Multiple-level association rule mining in [5] can use 
different minimum supports at different levels of 
hierarchy. However, at the same level it uses only 
one minsup. For example, we have the taxonomy: 
milk and cheese are Dairy_product; and pork and beef 
are Meat. At the level of Dairy_product and Meat, 
association rules can have one minsup, and at the level 
of milk, cheese, pork and  beef,  there  can  be  a  
different  minsup.  This  model  is essentially the 
same as the original model in [2] because each 
level has its own association rules involving items 
of that level. Our proposed model is more flexible 
as we can assign a MIS value for each item. [13]  
presents a generalized  multiple-level association rule 
mining technique, where an association rule can 
involve items at any level of the hierarchy. However, 
the model still uses only one minsup. 
It   is   easy   to   see   that   our   algorithm   
MSapriori   is   a generalization of the Apriori 
algorithm [3] for single minsup mining.  That  is,  
when  all  MIS  values  are  the  same  as  LS,  it 

reduces to the Apriori algorithm. A key idea of our 
algorithm MSapriori is the sorting of items in  I 
according to  their MIS use level-wise search, each 
step of our algorithm is different from that of 
algorithm Apriori, from initialization, candidate 
itemsets generation to pruning of candidate itemsets 
This paper argues that a single minsup is insufficient 
for association  rule mining since it cannot reflect 
the natures and frequency differences of the items 
in  the database. In  real-life applications, such 
differences can be very large. It is neither satisfactory 
to set the minsup too high, nor is it satisfactory to set 
it too  low. This paper proposes a more flexible 
and  powerful model. It allows the user to specify 
multiple minimum item supports. This model enables 
us to found rare item rules yet without producing a 
huge number of meaningless rules with frequent 
items. The effectiveness of the new model is shown 
experimentally and practically 
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